Photoinduced doping in heterostructures of graphene and boron nitride.
نویسندگان
چکیده
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
منابع مشابه
Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.
Using first-principles calculations, we examined the bipolar doping of double-layer graphene vertical heterostructures, which are constructed by hydrogenated boron nitride (BN) sheets sandwiched into two parallel graphene monolayers. The built-in potential difference in hydrogenated BN breaks the interlayer symmetry, resulting in the p- and n-type doping of two graphene layers at 0.83 and -0.8 ...
متن کاملHexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene
We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers ...
متن کاملTunable band gaps in bilayer graphene-BN heterostructures.
We investigate band gap tuning of bilayer graphene between hexagonal boron nitride sheets, by external electric fields. Using density functional theory, we show that the gap is continuously tunable from 0 to 0.2 eV and is robust to stacking disorder. Moreover, boron nitride sheets do not alter the fundamental response from that of free-standing bilayer graphene, apart from additional screening....
متن کاملContinuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single cryst...
متن کاملA hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures
Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2014